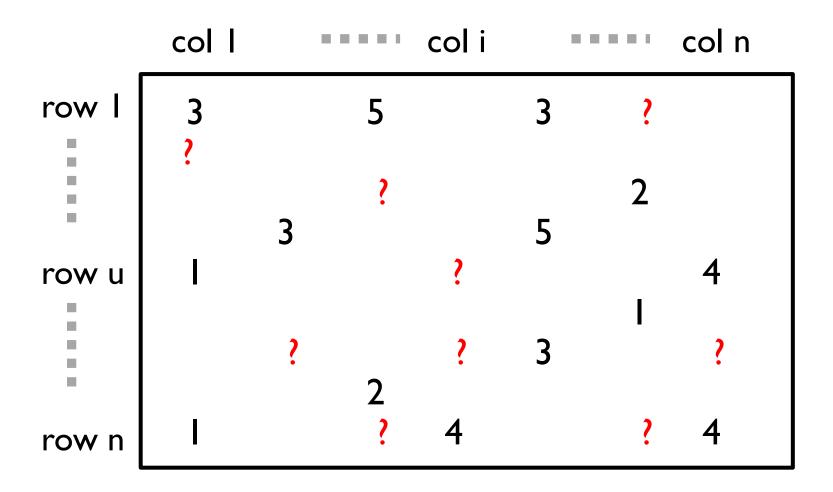
Iterative Collaborative Filtering for Sparse Matrix Estimation

Christina Lee Microsoft Research New England

Christian Borgs (MSR), Jennifer Chayes (MSR), Devavrat Shah (MIT)

Matrix Estimation



Matrix Estimation

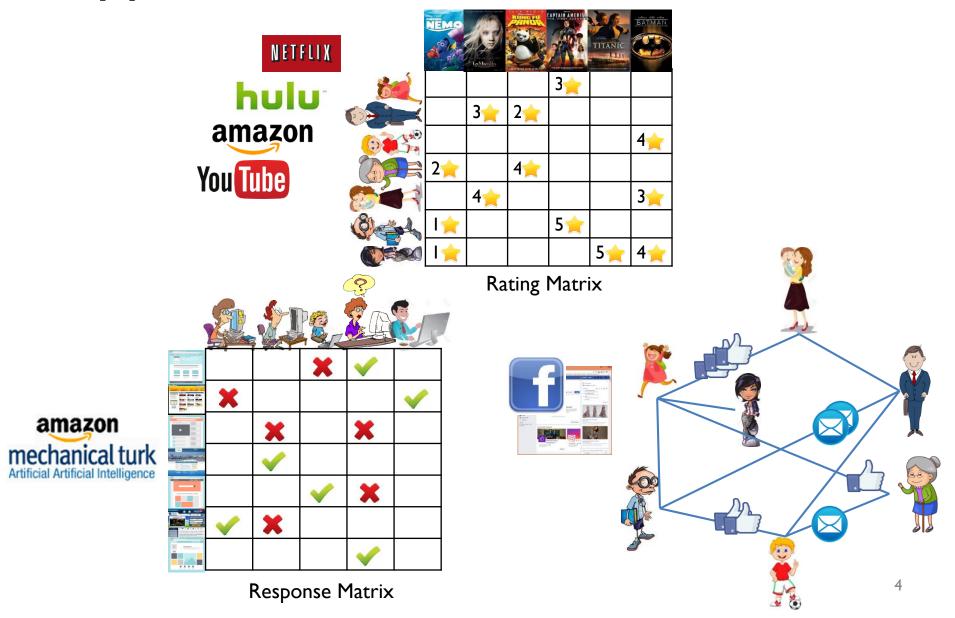
Observations

- Ground truth matrix F we want to estimate
- Obtain noisy observations $\{y_{ui}\}_{(u,i)\in E}$ for a subset E of entries subject to some noise model $\mathbb{E}[y_{ui}] = F_{ui}$

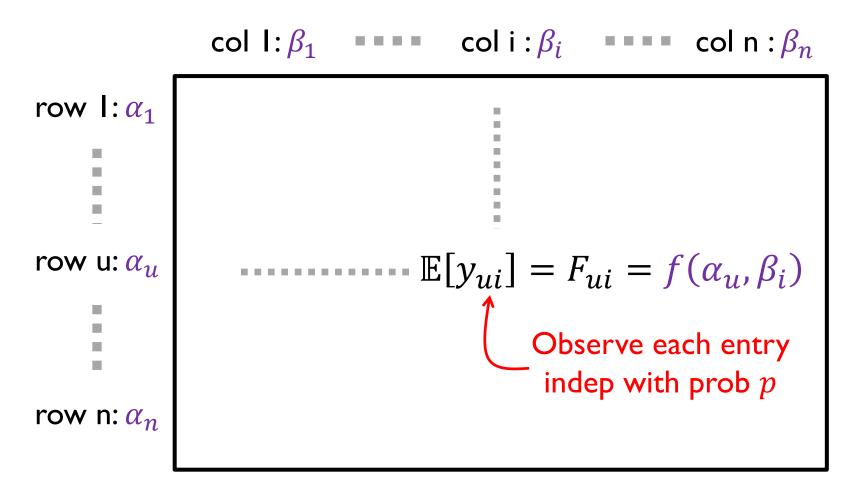
Goal

– Produce an estimated matrix \hat{F} so that the prediction error (e.g MSE) is small

Applications



Latent Variable Model



Latent variables and entrywise noise assumed to be independent

Latent Variable Model

- Uniform observation sampling with probability p
- Row and column latent features sampled iid from compact bounded spaces, $\alpha_u \sim P_{X_1}$, $\beta_i \sim P_{X_2}$
- Mean of observed data entry described by latent fn f

$$\mathbb{E}[y_{ui}|\alpha_u,\beta_i] = f(\alpha_u,\beta_i) \in [0,1]$$

with bounded entries $y_{ui} \in [0,1]$

• Latent function has finite spectrum with rank d

$$f(\alpha_u, \beta_i) = \sum_{k=1}^d \lambda_k q_k(\alpha_u) q'_k(\beta_i)$$

Performance Metric

 Given partial observation of noisy matrix, produce an estimation matrix so the prediction error is small

$$MSE = \mathbb{E}\left[\frac{1}{nm}\sum_{ui}\left(\widehat{F}_{ui} - f(\alpha_u, \beta_i)\right)^2\right]$$

• Minimize fraction p of matrix that needs to be observed (at random) to guarantee estimator is consistent

$$\lim_{n,m\to\infty}\mathsf{MSE}=0$$

Highlighted Results

(many remarkable results not reported here)

Paper	Sample Complexity	Noise Model	Function Class
Keshavan MontentariOh10	$\Omega(dn \max(\log n, d))$	Additive, iid Gaussian	Rank d
DavenportPlan BergWooters I 4	$\Omega(dn \max(\log n, d))$	Binary entries	Rank d
Chatterjee I 4	$\Omega(dn\log^6 n)$	Independent bounded	Rank d
XuMassoulie Lalarge I 4	$\Omega(n\log n)^*$	Binary entries	Rank d
AbbeSandon I 5	$\omega(n)^*$	Binary entries	piecewise constant (d blocks)
BorgsChayes LeeShah17	$\omega(d^5n)$	Independent bounded	Rank d

^{*}does not indicate dependence on d

Our Result [Borgs, Chayes, Lee, Shah '17]

Assume

- uniform sampling with prob p
- independent noise, bounded entries
- f has finite spectrum (rank d)

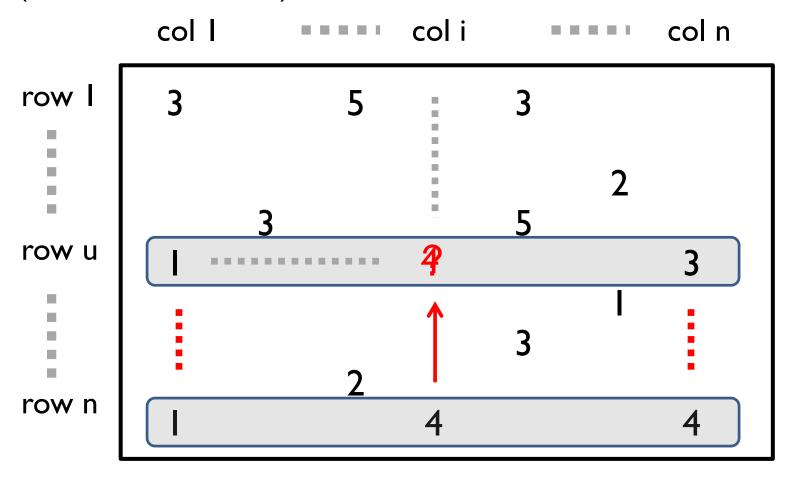
If
$$p = \omega \ (d^5 n^{-1})$$
,
$${\sf MSE} = O \big(d^2 (pn)^{-2/5} \big) \to 0.$$

If $p = \omega(d^5n^{-1}\ln^5(n))$, then with high probability,

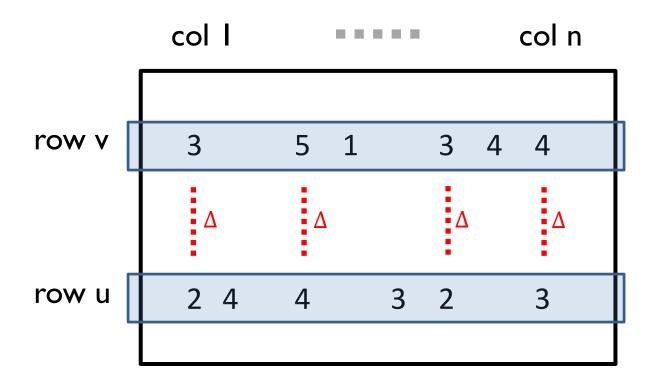
$$\max_{ij} \left(\widehat{F}_{ij} - f(\alpha_i, \alpha_j) \right)^2 = O(d^2(pn)^{-1/5}) \to 0.$$

Collaborative Filtering [Goldberg et. al. 92]

(user-user variant)

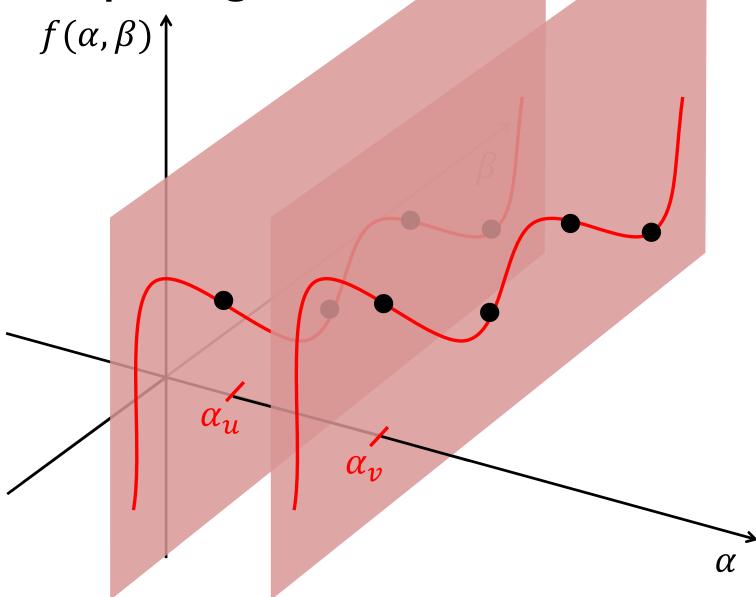


Computing Pairwise Distances

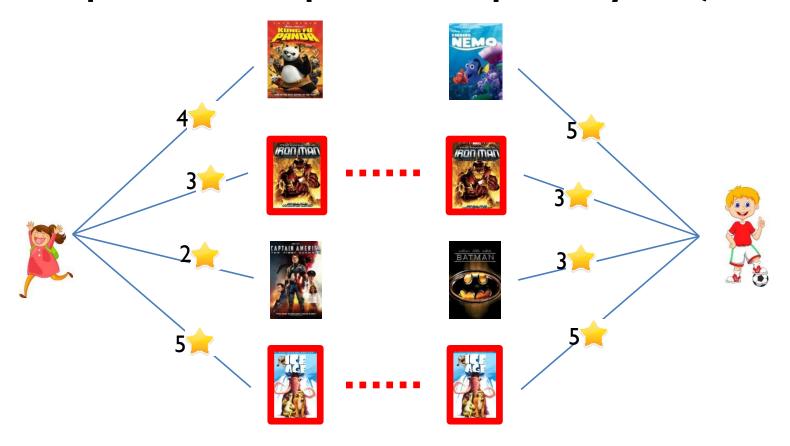


"estimated distances are finite sample estimates of L_2 distance between users' rating functions over movie space" [Lee-Li-Shah-Song NIPS 2016]

Computing Pairwise Distances

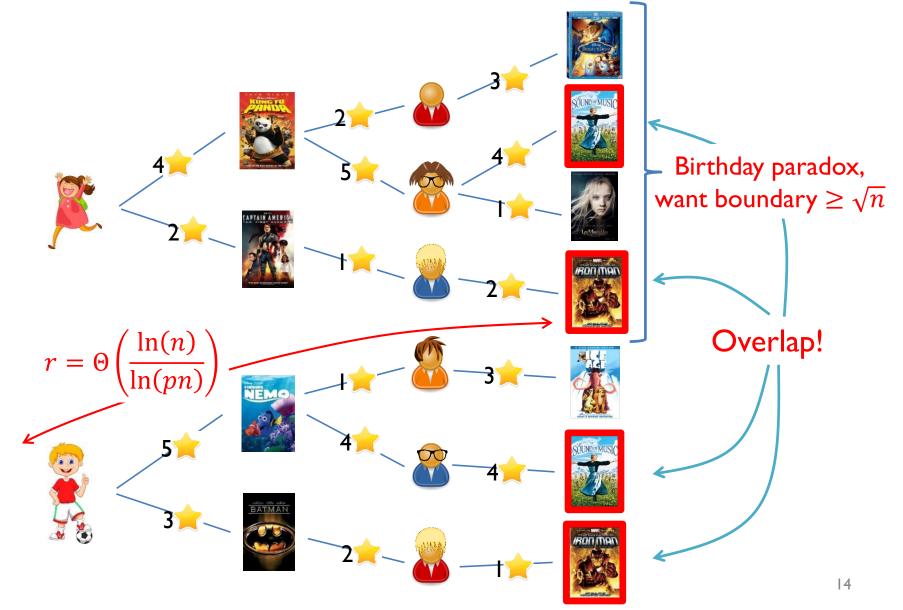


Requires Sample Complexity $\Omega(n^{3/2})$

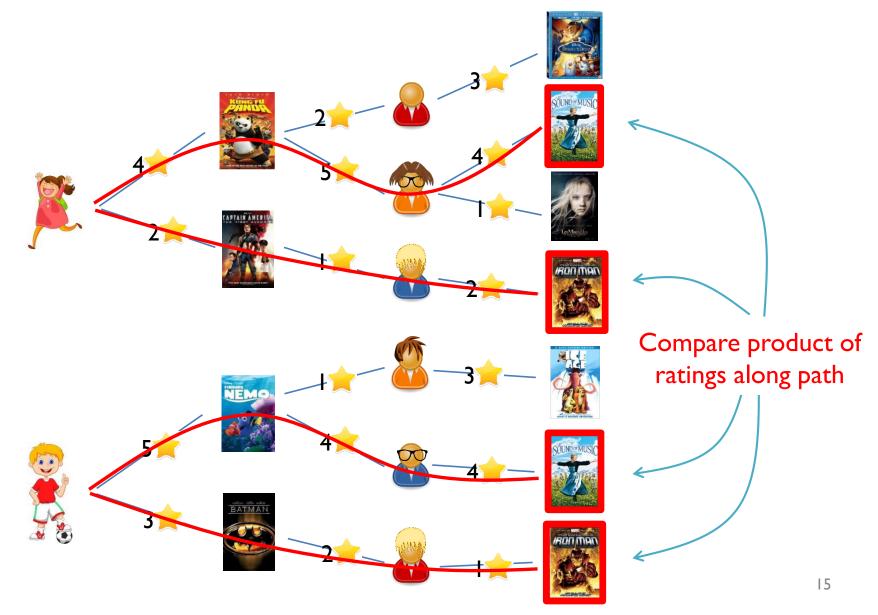


Computing similarity requires overlap Birthday Paradox requires sample complexity $\Omega(n^{3/2})$ Does not work for sparser datasets!

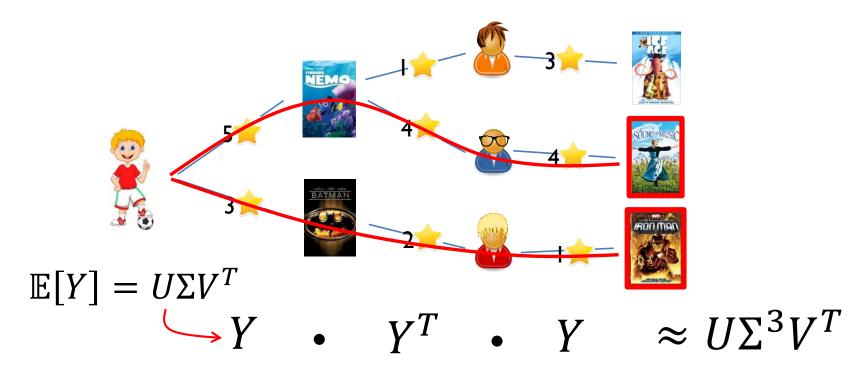
Expanding Neighborhood



Expanding Neighborhood



Expanding Neighborhood



Compare direct neighbors
$$\sim \|(u_{\mathbb{R}} - u_{\mathbb{R}})\Sigma\|_2^2$$

Compare r boundary neighbors $\sim \|(u - u)\Sigma^r\|_2^2$

Algorithm Summary

Step I: Estimate distances by comparing product of weights along path to shared vertices in radius r neighborhoods, for $r = \Theta\left(\frac{\ln(n)}{\ln(pn)}\right)$

Step 2: Predict by averaging close neighbors

$$\widehat{F}_{ui} = \frac{1}{Z} \sum_{(v,j)} y_{vj} \mathbb{I}(uv \text{ "close"}, ij \text{ "close"})$$

Finer details ...

- Use sample splitting between algorithm steps
- Do not include loops in path (use breadth first tree)
- Reduce computation by using coarse clustering
- Converges for $p=\omega(n^{-1+\epsilon})$ with $\epsilon>0$ because r constant, but modification needed for smaller p